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Abstract-A Large array of small antennas can be used to 
enhance signals with very low signal-to-noise ratio and can 
also be used to replace large apertures. In this paper, a fast 
combining algorithm is proposed and analyzed to maximize 
the combined output signal-to-noise ratio. Our approach 
does not assume any sequence of trained samples and is a 
blind combining technique, which does not require a priori 
knowledge of spacecraft’s or the array’s spatial information. 
Our method for computing the optimal weight is based on 
the generalized Eigen theory and the algorithms are built 
upon the Power method. Unique advantages of our proposed 
algorithm include (i) no formation of covariance matrices 
and hence less storage is required (ii) the optimal weight is 
obtained with significant less efforts and thus the optimal 
weight can be attained more quickly (iii) our proposed 
algorithm is capable of handling the case when the symbol 
signal-to-noise-ratios at the receivers are very weak. 
Mathematical framework for large antenna arrays using the 
Eigen-based signal combining techniques along with 
detailed performance analysis, numerical algorithms and 
computer simulations are presented. 
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1. INTRODUCTION 

An antenna array is a collection of antennas spreading out 
over a field in some geometrical configurations, transmitting 
and receiving signals. Its primary use is to enhance the 
detection of signals with weak signal-to-noise ratio (SNR). 
With a good signal processing technique, undesired signals 
such as receiver’s internally generated noise can be 
suppressed and the combined output S N R  can be amplified 
by many folds. One of the proven techniques is called Signal 
Combining, whose main idea is to find a set of optimal 
weight, so that the combined signal output achieves certain 
objectives. A number of signal combining techniques have 
been studied and can be found in [ 13 and [2]. Our particular 
interests include maximizing the combined output signal 
power and minimizing receiver’s noise. It turns out that 
when the receiver noise are additive white Gaussian, 
maximizing the combined output S N R  is equivalent to 
maximizing the combined output power [3]. The optimal 
weight, as will be shown in Section 3, is the dominant 
eigenvectors of the Eigen problem. While such optimal 
weight yields the largest SNR, its calculation involves 
forming the covariance matrix and solving an Eigen 
problem. As a result, for large-size arrays, the eigen-based 
approaches require large computing time and memory 
storage. Also demand for hardware performances such as 
signal multipliers and signal correlators becomes expensive 
as the number of the antennas in the array increases. To 
retain the potentials and merits of the eigen-based approach 
while alleviating the computational costs and hardware 
performances, we propose an iterative algorithm, which 
iteratively maximizes the combined output SNR. The goal of 
this paper is to develop a practical numerical scheme to 
calculate the optimal weight as fast as possible with little or 
no memory storage. Our proposed algorithm, which solves 
for the optimal weight iteratively, is derived from a well- 
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known numerical algorithm for find the dominant 
eigenvector, called the Power method [4]. Best of all, our 
iterative approaches bypasses the requirement of forming or 
inverting any covariance matrices. Moreover, due to the 
iterative nature of our approach, optimal weight for the 
previous time step can be used as an initial starting point for 
faster convergence. That is, the first set of optimal weight 
may be attained with many iterations and the consecutive 
weight can be found with fewer iterations when the spatial 
geometry of the array and spacecraft remains unchanged. 
Evidently, this corresponds to the acquisition phase and the 
tracking phase during operation. 

Our paper is structured as follows. In Section 2, we develop 
a mathematical framework for large antenna arrays using the 
Eigen-based signal combining techniques and derive the 
numerical schemes for direct Eigen method, the Power 
method and the proposed matrix-free method. Performance 
analysis for the proposed algorithm is described in Section 
3. Numerical simulations are presented in Section 4. We end 
the paper in Section 5 with the discussion of the schemes 
and some conclusions. 

2. EIGEN-BASED SIGNAL COMBINING FRAMEWORK 

As illustrated in Figure 1, the considered array consists of a 
cluster of N antennas, distributed in some arbitrary patterns. 
The algorithms proposed in this paper are blind combining 
techniques and do not assume a priori knowledge of the 
direction or location of the spacecraft nor the geometry of 
the antenna array. In addition, our schemes do not require 
the transmission of any trained symbols. Thus the array’s 
phase vector is not known and the combining algorithms are 
implemented based solely on the observables at the 
receivers. 

Receivable Xi 

Figure 1. Large Antenna Array Geometry 

The observables at receivers are denoted by {xJ~))N , each 
of which consists of the signal from the spacecraft with some 
delay phase as well as the noise from the receiver. Suppose 
the signal to noise ratio at each receiver is sufficiently 
strong, then employing large antenna array techniques seems 
unnecessary. However if the signal to noise ratio at the 
receivers are very weak, large antenna array can help to 
amplify the signal to noise ratio. Such implementation 
requires the construction of a set of weight {w , ( t ) c ,  so that 
the combined output 

,=I 

N 

Y ( t )  = C w , X i ( t )  
i=l 

yields the largest possible signal to noise ratio (Figure 2). It 
has been shown in [3] that when the receiver’s noise is of 
additive white Gaussian, maximizing the output’s signal to 
noise ratio is equivalent to maximizing the output power. 
Thus our goal is to find an optimal set of normalized weight 
that maximizes the combined time-average output signal 
power, 

where E [o] is the asymptotic time average expected value, 
the superscript H denotes the transpose conjugate operator, 
and 0 ,  is the receivable covariance matrix, whose (i ,  j)-th 
entiy is of the form 

and L is the length of samples within a processing block. 

(3) 

I 4 
Compute optimal weight 
G+*,w,,*..,wN)T 

Figure 2. Signal Combining Scheme 

This Eigen-based signal combining approach has been 
widely studied. Hackett [ 5 ]  proposed this technique as a 
mean to adaptively separate the communication signals in an 
antenna array. In his study he assumed that each receivable 
consists of thermal noise and the signals. The thermal noise 
is broadband so that it can induce interferences. The optimal 
weight in this approach is proved to be the eigenvector 
corresponding to the largest eigenvalue of the covariance 



matrix 0,. To demonstrate this point in a simplest 
manner, one can use the eigen-theory to decompose the 
Hermitian covariance matrix 0, in its normal form of 

0, =VAL'", (4) 

V=[?,, ..., ?,I , ( 5 )  

A=diag( &,... ,AN), (6)  

where 

is the matrix of normalized eigenvectors and 

is a diagonal matrix of eigenvalues with ,I, 2 & 2.. .2 A,. 
It should be pointed out that the eigenvectors are complex 
orthonormal and V-' = V" . Then the optimal weight can be 
written as the linear combination of the eigenvectors as 

N 

G = c a i G i  =VG where ti=[%, ..., a,IT. 

Consequently, the combined output power (2) becomes 

i= l  

(7) 

i=l 

It is evident from (8) that the optimal weight should be 
directed towards the eigenvectors in a fashion that it 
maximizes the combined output power. Such process along 
with the constraint 11 GII=1 are equivalent to finding a 
longest vector centered at the origin and enclosed by an N- 
dimensional ellipsoid whose vertices point in the direction 
of the eigenvectors and the semi-major axes are 
,I,,& ,..., A, respectively. As a result, combined output 
power combined output power , q y ~ * ]  is peaked at 
Amax =,$ and the optimal weight is G I ,  the dominant 
eigenvector. 

Direct Eigen Method 
Conventional Eigen-based technique for computing optimal 
weight requires (a) forming the covariance matrix 0, 
(order N 2 L  operations) and (b) solving the Eigen problem 
0 , G  = AG (order N 3  operations). Both processes become 
expensive and impractical in term of hardware performances 
and speed as the size of the antenna array size ( N ) and the 
length of symbols ( L )  grow. Namely, its computational load 
is of order ( N 2 L +  N 3 ) .  

Power Method 
Since the conventional technique searches for all pairs of 
eigenvalues and eigenvectors and uses only the dominant 
eigenvector, majority of its efforts in solving the Eigen 
problem is unnecessary. Instead, a well-known technique, 
called the Power method and can be found in any numerical 
analysis book, is a more appropriate choice. The aim of this 
technique is to determine solely the dominant eigenvector. 
Its implementation is simple and its approach is iterative. 

Starting with an initial guess + O ) ,  the subsequent iterative 
solutions follow 

i+(k) = 0, i+(k-t) for k = 1,2,. . . (8) 

The recursive solution will converge to the dominant 
eigenvector G and the convergence rate depends on the 
ratio of the eigenvalues (4 / A , ) .  To briefly explain the 
Power method, we start expressing the arbitrary initial guess 
iP) as a linear combination of eigenvectors of the 
covariance matrix 0, 

iiji0) = a,?, + a2G2 + . . .+a,?, , (9) 

with a, # 0. Then the recursive relation (1 8) implies that 

G(k) - - A, k [a,Gt + a,(& /A , )k  G2 + . . . + a, (A, /A,>'G, 1. (10) 

Since 4 is the dominant eigenvalue, (/2,/4)<1 for 
i = 2 , 3  ,..., N ,  the termS converge to 0 for 
sufficiently large k. As a result, G(k)  converges to the 
dominant eigenvector iil as qPXxG(') = In practice, to 
prevent it from becoming unbounded, G(') is normalized at 
each iteration, Le. i+(k) = / 11 Q,G("') 11, (see Fig. 
3 for details). 

I 
r=N,I=L  I New Receivables {xi(tl)},=,,/=, 1 

I I I + 
Compute Covariance Matrix 0, 

& I Initial Guess I 

I N 
ICombined Receivables y( t )  = y(K)Xi(t) 
I i = l  I 

~~ 

Fig. 3-Power method algorithm for dominant eigenvector 

Because the Power method searches only for the dominant 
eigenvector, which is exactly what we need, it reduces only 
the computational costs for solving the eigen problem. 
Namely, one still has to form the covariance matrix (order 
N ~ L  operations) and (ii) each iteration requires a matrix- 
vector multiplication (order NZ operations). The resulting 
computational cost is of order N 2 L  + N Z K  , where K is the 
number of required iterations. Such computational saving is 
substantial if the array size N is much greater than number 



of symbols within a processing block L. This is hardly the 
case as L is significantly greater than N . 

Power Method 
Proposed Matrix-free Method 

Proposed Mah.ir-free Signal Combining Algorithm 
To reduce further the number of operations in the Power 
method for the maximizing the combined output power, we 
propose a matrix-free algorithm that bases on the Power 
method. Our algorithm bypasses the requirement of forming 
the covariance matrix, an significant advantage in speed, 
computational intensity and memory storage. We will 
demonstrate that each iterative process is equivalent to that 
of the power method and the number of operation involved 
is of order ( N L K ) ,  where K is the number of required 
iterations. 

O(max( N 2  K ,  N 2  L ) )  
O( NLK) 

r=N.I=L I New Receivables {Xi(t,)},=,,,=, I 
$ 0 )  

7 

I N --1 
I I Combined Receivables Y = c y(K)Xi 

Fig. 4-Proposed Iterative Matrix-free Eigen-based Signal 
Combining Algorithm 

The following relation clarifies the equivalence of the two 
algorthims given in Figures 3 and 4, 

i=l 
N 

i=l 

li = [ @ & p - l )  

The computational saving for the proposed algorithm can be 
analyzed as follows. Each iteration requires the following 
operations: 

(i) Forming the weighted sum of the receivables 
N 

u = i q l k - ’ ’  x; , 

(ii) Updating the weight by taking the inner product of 
the weighted sum with each individual receivable 

v’, = E[Xj i i ]  for j =1,2, ..., N ,  

w‘” = v’/ 11 3 11, 

(13) 

(iii) Normalizing the result gives 

(14) 

The total number of floating point operations needed to find 
the optimal weight in the proposed algorithm is 
( N L + N L + 2 N ) K  - O(NLK),  respectively. Note that the 
number of iterations K is usually much smaller than the array 
size N and the number of symbols L. In practice, processing 
the first set of weight from an initial block of symbol may 
require several iterations. However, when the spacecraft and 
the ground stations are changing slowly and using the 
previously found weight as an initial guess, subsequent 
weights can converge quickly. As will be demonstrated later 
in the next section, when the geometry of the spacecraft 
remains unchanged with respect to the array, the next set of 
weight converges with a small number of iterations; and in 
most cases only a few iterations are needed. 

Our algorithm is unique and remarkable in a sense that the 
dominant eigenvector is found without the actual formation 
of the covariance matrices and the number of operations 
involved is one order less intensive. 

Several algorithms have been studied to reduce the 
computational intensity. Particularly. Choi and Yun [6] 
casted the maximizing combined output power approach 
into a Lagrange Multiplier optimization: 

max GHO,G subject to GHG = 1. (15) 

At each time step, Choi and Yun solved the optimization 
using the modified conjugate gradient method to obtain G 
iteratively and successfully reduce the computational load 
down to the order (NLK), where K is the number of 
required iterations. However, like any other high- 
dimensional optimization schemes, the result often yields a 
sub-optimal set of weight. Mainly the initial guess may be in 
the vicinity of a local maximum, which attracts the iterative 
solutions. 

The following table summarizes the flop counts for all the 
considered algorithms. 

Signal Combining Algorithms [ Number of Operations 
Conventional Eigen Method I O(max{N3, N’LH 

We end this section with the following remark. For the case 
when multiple signal transmitters are present, several 
primary dominant eigenvectors are needed and each of i=l 



which will yield a combined signal in accordance to 
equation (1). The first dominant weight is computed using 
the proposed algorithms. Subsequent dominant weights are 
found using the same algorithms, but for the shifted eigen 
problem and with an extra step of orthogonalizing against 
the previously found weights. For instance, to compute the 
second dominant eigenpair (4, G2 ) , we repeat our proposed 
algorithms with e, replaced by (8, -4) and 
orthogonalize after each or a few iterations using the 
modified Gram-Schmidt method [lo]. 

3. PERFORMANCE ANALYSIS 
Let us analyze the performance of the eigen-based signal 
combining technique. Suppose the phase vector 
[e-@1,e-@2 9 * . e ,  e - @ ~ ]  for the antenna array is known, then 
in the ideal case, when the receivables are perfectly 
combined, the weight is the conjugate of the phase vector 

and the combined output signal in (1) becomes 

i=l 

The resulting signal-to-noise ratio for the combined output is 

where 012 is the receiver’s noise variance. When the 
receivers’ noise variances are the same, the combined output 
SNR is 

In short, the ideal SNR performance of the eigen-based 
signal combining approach yields a theoretical gain factor of 
N over the receiver’s input SNR. 

4. NUMERICAL RESULTS & DISCUSSIONS 
In our simulations, we assume that the arrays are of 
rectangular configurations and of different sizes. The 
receivables are constructed based on the following 
spacecraft and antenna array assumptions. The antennas are 
separated from another 20 meters in the x-direction and 30 
meters in the y-direction. The spacecraft signal arrives in the 
direction of 30’ elevation and 15’ azimuth. Ka-band 
frequency is assumed. The symbols are complex-valued 
their length within each processing block varies from 5,000 
up to 60,000 with increment of 5,000 symbols. 

Many combining techniques tend to work well when the 
input SNR at each receiver is sufficiently large and actually 

fail when the received SNR is very weak. To demonstrate 
that our proposed algorithm works even when the SNR is 
very small, we assume in our simulations that the received 
SNR at each antenna is - (7 + 10 log N) dB for an array of 
size N . For example, if N = 128, the SNR at each receiver 
is assumed to be - (28.0721) dB . Both the received input 
SNR and the theoretical combined output SINR for our 
considered array configurations are shown in Table 2. 

I Array I 4 x 2  I 4x4  I 4x8 1 8x8 I 8x16 1 Configuration 

16.0309 -19.0412 -22.0515 -25.0618 -28.0721 Received 
Input Symbol 1 1 (dB) 1 (dB) 1 (dB) 1 (dB) I :l:: 1 

Combined 
Out ut SNR 

Table 2 -Array configurations for numerical simulations 

Theoretical -7.0000 -7.oooo -7.oooo - 7 . m  - 7 . m  
(dB) (dB) (dB) (dB) 

and the received, combined, and gained symbol SNRs. 

Also as suggested in [ l l ] ,  the initial guess for our Power 
method and the proposed matrix-free algorithms is chosen 
as, 

G ( O )  =[I, ..., lIT I J N  
for faster convergence. Once the optimal weight is found we 
compute the corresponding SNR, which will be compared 
with the theoretical combined SNR, - 7  (dB). The 
difference of the two yields the degradation or the combined 
loss of the symbol SNR. 

Numerical simulations are implemented using the direct 
Eigen algorithm as well as the proposed matrix-free 
algorithm (Figure 4). The combined symbol SNR losses for 
different array sizes and symbol lengths are displayed in 
Figures 5 and 6. Numerical performances, in term of 
combined output of symbol SNR losses, for both algorithms 
are exhibited in Table 3. 

EIGEN-Method and the Proposed Algorithm. 

We found that as the number of symbols per processing 
block increases the symbol SNR loss diminishes. For 
instance, in the case when the antenna size is 2x4 and 
received symbol SNR is -16.0309 (dB) with for Ir30,OOO. 
In this case, the received symbol SNR losses for the both the 
Eigen and the proposed algorithms are less than 0.02 (a). 



In addition, one can find from Table 3 that the proposed 
algorithm produces slightly better results than those of 
employed by the direct Eigen methods. This is not surprising 
to us and is simply due to the nature of the involving 
techniques. Namely, in our proposed algorithm, we form at 
each iteration the combining sums, for instance, of the 
receivables (see Figure 4). Such process is beneficial to us in 
the sense that desired signals are preserved and in fact 
amplified, while the noise and undesired signals get 
cancelled. As for the direct Eigen technique, such event does 
not occur as the covariance matrix is computed instead. 
Nevertheless all considered algorithms work. 

4 4  \ I 
\ $ 1  

Fig. 5-Symbol S N R  loss using the Eigen method. 

$ !  j4t \ 

Fig. 6-Symbol S N R  loss using the proposed algorithm. 

5. CONCLUSIONS 

In this paper, we proposed a fast signal combining 
algorithm, which is based on the Eigen theory and solves 
iteratively for an optimal weight that maximizes the 
combined output signal-to-noise ratio. Our proposed scheme 
is practical in the sense that (i) the resulting optimal weight 
yields the theoretical combined output SNR, (ii) no 
covariance matrix is formed during the process and (iii) the 
proposed algorithm uses the smallest possible amount of 

computing operations and as well as memory storage; 
rendering its capability for large-size arrays. Mathematical 
framework and performance analysis for our algorithm are 
also presented. Numerical simulations have shown that the 
proposed algorithm yields excellent S N R  performances. 
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